

Deep Vadose Zone Remediation and Subsurface Access

Remediation Context

- Deep contaminants
 - Primary issue is the potential impact to groundwater
 - Difficult access for characterization, remediation, and monitoring
- Radionuclide contaminants (uranium, technetium)
 - not destroyed, so must manage for the long term

What do we know?

Compilations of technology information

- DOE. 1999. 200 Areas Remedial Investigation/Feasibility Study
 Implementation Plan Environmental Restoration Program.
- Looney and Falta. 2000. Vadose Zone, Science and Technology Solutions.
- CHG. 2007. Central Plateau Vadose Zone Remediation Technology Screening Evaluation.
- DOE. 2008. Deep Vadose Zone Treatability Test Plan for the Hanford Central Plateau.

Technology development and testing

- DOE EM-32 program
- Deep Vadose Zone Treatability Test

What are the options?

- Remove (excavation, soil flushing)
 - extract, stabilize/reduce volume, dispose
- Contain (surface barrier)
 - create physical barrier to minimize movement to groundwater
- In situ treatment (desiccation, in situ precipitation)
 - use subsurface process to minimize movement to groundwater
- Natural Attenuation

What does remediation do?

- End result: Reduced flux of contaminants to groundwater
 - if low enough, groundwater concentration stays low
- Remove
 - Remove enough contaminant to prevent threat to groundwater.
- Contain and in situ treatment
 - Slow the movement through the vadose zone.
- Natural Attenuation
 - Is the contaminant flux low enough already?

Linkage to "Characterize/Predict/Monitor" Elements

 How are the contaminants moving now and how much do we need to change this movement?

Conceptual Example of Flux Reduction

How do we remediate?

- Remove
 - Move contaminants to the surface
 - Excavate soil
 - Move water through soil, catch and carry contaminants in water, capture the water, and bring it to the surface

How do we remediate?

- Contain
 - Minimize movement of water through contaminated zone
 - Install a surface barrier to minimize infiltration into the subsurface

How do we remediate?

- In Situ Treatment
 - Distribute energy or materials in the subsurface to change the contaminant and/or subsurface conditions in a way that minimizes contaminant movement
 - Desiccate the soil to reduce the movement of water and associated contaminants through the vadose zone
 - Inject a reagent that causes contaminants to be bound in precipitates

Linkage to "Characterize/Predict/Monitor" Elements

- Where do we remediate?
- What is the physical and chemical setting for remediation?
- What is the impact of our action now and in the future?

What are we doing now?

- DOE EM-32 Program
 - In Situ Treatment of Metals and Radionuclides
 - Example activity: improved delivery of remediation amendments to the vadose zone (e.g., foam)
- Deep Vadose Zone Treatability Testing at Hanford

Deep Vadose Treatability Test Plan

- Evaluate specific vadose zone remediation technologies for technetium-99 and uranium
- Focus on in situ and surface barrier technologies
 - In situ technologies for application to the Hanford deep vadose zone are not developed and tested sufficiently to enable an adequate evaluation as a remedial alternative. Thus, treatability testing is warranted.

Deep Vadose Treatability Test Plan

Desiccation Pilot Test

- Laboratory and modeling studies conducted 2008 through present
- Characterization test at field site completed in July 2009
- Scheduled to start desiccation test in October 2010

Desiccation Test

Reactive Gas Treatment of Uranium

- Laboratory evaluation of potential technologies conducted 2009 (SGW-44409)
- Laboratory study of selected ammonia gas technology initiated in 2010
- Field Test Plan to be developed 2011

Reactive Gas Treatment of Uranium

Ammonia Injection

Surface Barrier Study

- Surface Barrier Study
 - Evaluated existing published barrier reports to determine the effectiveness of barrier systems in context of deep vadose contaminants
 - Identified data gaps for deep vadose application
 - Results of study documented in PNNL-18661

Grouting and Soil Flushing

- Grouting Technologies
 - Initial evaluation underway in FY10
- Soil Flushing
 - Initial evaluation underway in FY10
- Potential for additional treatability tests to be added to program

